Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__g(X) → a__h(X)
a__c → d
a__h(d) → a__g(c)
mark(g(X)) → a__g(X)
mark(h(X)) → a__h(X)
mark(c) → a__c
mark(d) → d
a__g(X) → g(X)
a__h(X) → h(X)
a__c → c
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__g(X) → a__h(X)
a__c → d
a__h(d) → a__g(c)
mark(g(X)) → a__g(X)
mark(h(X)) → a__h(X)
mark(c) → a__c
mark(d) → d
a__g(X) → g(X)
a__h(X) → h(X)
a__c → c
Q is empty.
We use [23] with the following order to prove termination.
Recursive path order with status [2].
Quasi-Precedence:
[ac, mark1] > d > ag1 > ah1 > c
[ac, mark1] > d > ag1 > ah1 > h1
[ac, mark1] > d > ag1 > g1
Status: d: multiset
h1: [1]
ag1: multiset
mark1: multiset
c: multiset
ah1: [1]
ac: multiset
g1: multiset